Национальный исследовательский Томский государственный университет

Олимпиада по математике 2016 года

(физические факультеты, первый курс)

Задача 1. Пусть
$$\left\{(x_k;y_k)\right\}_{k=1}^n$$
 — все решения системы $\begin{cases} y=\cos x; \\ x=100\cos 100y. \end{cases}$ Найдите отношение $\frac{x_1+x_2+\cdots+x_n}{y_1+y_2+\cdots+y_n}$.

Задача 2. Функция
$$f(x) = \frac{\sqrt{x + \sqrt[3]{x^2}} \cdot \ln\left(\frac{1-x}{1+x}\right)}{x \cdot \sin(\sqrt[3]{x})}$$
 теряет смысл при $x = 0$.

Доопределите, если это возможно, функцию, чтобы она стала непрерывной в нуле. Если это невозможно, то объясните почему.

Задача 3. Докажите, что для любого натурального n, отличного от единицы, существует n иррациональных чисел, сумма и произведение которых являются целыми.

Задача 4. Найдите все возможные наборы из трех попарно различных целых чисел, обладающих следующим свойством: если выбрать одно из этих чисел и прибавить к нему сумму кубов двух других, то получится одна и та же сумма, независимо от выбранного числа.

Задача 5. Дана система из n линейных алгебраических уравнений с n неизвестными, все коэффициенты которой отличны от нуля. При решении этой системы по формулам Крамера $x_k = \frac{\Delta_k}{\Delta}$ оказалось, что как основной определитель Δ , так и все дополнительные определители $\Delta_1, \ \Delta_2, \ \dots, \ \Delta_n$ равны нулю. Для каждого натурального n, отличного от единицы, ответьте на вопрос: «Верно ли, что данная система уравнений обязательно имеет бесконечно много решений?».

Задача 6. Решите уравнение
$$(5-x-x^2)^2+3(5-x-x^2)-5=x$$
.

Национальный исследовательский Томский государственный университет

Олимпиада по математике 2016 года

(физические факультеты, старшие курсы)

Задача 1. Найдите площадь области, ограниченной в декартовой системе координат линией $(x-y)^2 + x^2 = 1$.

Задача 2. Исследуйте на сходимость числовой ряд $\sum_{n=1}^{+\infty} \frac{(2n)!!}{1!+2!+...+n!}$, где (2n)!!-9то произведение всех четных натуральных чисел, не превосходящих (2n).

Задача 3. Докажите, что формула $\int \cos^a x \, dx = \frac{\sin x \cos^{a-1} x}{a} + \frac{a-1}{a} \int \cos^{a-2} x \, dx$ верна для любого $a \neq 0$. С помощью этой формулы вычислите интеграл $\int\limits_0^{\frac{\pi}{4}} \cos^8 x \, dx$.

Задача 4. Решите задачу Коши:
$$3(x^2-1)y^2y'+xy^3=x^3+x^2-x-1,\ y\left(\frac{1}{2}\right)=0.$$

Задача 5. Докажите, что для любого натурального n, отличного от единицы, существует n иррациональных чисел, сумма и произведение которых являются целыми.

Задача 6. Вычислите $\oint_C \frac{XdY - YdX}{X^2 + Y^2}$, где $X = a_1x + b_1y$, $Y = a_2x + b_2y$, $a_1b_2 - a_2b_1 \neq 0$, C – простой замкнутый контур, окружающий начало координат (положительно ориентированный).

Национальный исследовательский Томский государственный университет

Олимпиада по математике 2016 года

(естественнонаучные факультеты)

Задача 1. Решите уравнение $x + y = x^2 - xy + y^2$ в натуральных числах.

Задача 2. Рассмотрим отрезок AB. Последовательность точек $(M_n)_{n\in\mathbb{N}}$ строится следующим образом: $M_1=A$, $M_2=B$, M_{n+1} — середина отрезка, соединяющего точки M_{n-1} и M_n . К какой точке отрезка AB стремится последовательность $(M_n)_{n\in\mathbb{N}}$?

Задача 3. Постройте график функции y = x + [x] при $0 \le x \le 5$, где [x] — это целая часть числа x.

Задача 4. Какой из двух следующих пределов существует, а какой нет: а) предел последовательности $\limsup_{n\to\infty}\sin(\pi n)$; б) предел функции $\limsup_{x\to\infty}\sin(\pi x)$? Ответ обоснуйте.

Задача 5. Вычислите значение выражения $\frac{\partial \rho}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial \varphi}{\partial x} \frac{\partial x}{\partial \varphi}$, где $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $\rho > 0$, $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$.

Задача 6. Существуют ли три различных иррациональных числа, сумма и произведение которых являются целыми?

Решения.

Физические факультеты. Первый курс.

Задача 1. Пусть $\{(x_k; y_k)\}_{k=1}^n$ — все решения системы $\begin{cases} y = \cos x; \\ x = 100\cos 100y. \end{cases}$ Найдите

отношение $\frac{x_1 + x_2 + \dots + x_n}{y_1 + y_2 + \dots + y_n}$.

Решение. Сделаем замену z=100y. Тогда исходная система примет вид $\begin{cases} z=100\cos x; \\ x=100\cos z. \end{cases}$ Очевидно, что если пара (a;b) – решение последней системы, то пара (b;a)

— тоже ее решение. Тогда $x_1+x_2+\cdots+x_n=z_1+z_2+\cdots+z_n=100(y_1+y_2+\cdots+y_n)$, откуда искомое отношение равно 100.

Задача 2. Функция
$$f(x) = \frac{\sqrt{x + \sqrt[3]{x^2}} \cdot \ln\left(\frac{1-x}{1+x}\right)}{x \cdot \sin(\sqrt[3]{x})}$$
 теряет смысл при $x = 0$.

Доопределите, если это возможно, функцию, чтобы она стала непрерывной в нуле. Если это невозможно, то объясните почему.

Решение. Вычислим $\lim_{x\to \pm 0} f(x)$. Воспользуемся эквивалентностью при $x\to 0$:

$$\sqrt{x + \sqrt[3]{x^2}} \cdot \ln\left(\frac{1-x}{1+x}\right) \sim \sqrt{x + \sqrt[3]{x^2}} \cdot \ln\left(1 + \frac{1-x}{1+x} - 1\right) \sim \sqrt{x^{2/3}} \sqrt{1 + x^{1/3}} \cdot \left(\frac{1-x}{1+x} - 1\right) \sim |x|^{1/3} \left(-2x\right).$$

Тогда имеем равенства $\lim_{x\to\pm 0}\frac{\sqrt{x+\sqrt[3]{x^2}}\cdot\ln\left(\frac{1-x}{1+x}\right)}{x\cdot\sin(\sqrt[3]{x})}=\lim_{x\to\pm 0}\frac{-2x\left|x\right|^{1/3}}{x\cdot x^{1/3}}=-2\lim_{x\to\pm 0}\left(\frac{\left|x\right|}{x}\right)^{1/3}.$ Поэтому f(0-0)=+2, f(0+0)=-2. Предела в нуле не существует, а значит, доопределить по непрерывности в нуле нельзя.

Задача 3. Докажите, что для любого натурального n, отличного от единицы, существует n иррациональных чисел, сумма и произведение которых являются целыми.

Решение. Числа $a_1=a_2=\ldots=a_{n-1}=\sqrt[n]{2}$, $a_n=(1-n)\sqrt[n]{2}$ удовлетворяют условию задачи. Число $\sqrt[n]{2}$ иррационально, т.к. иначе получаем: $\sqrt[n]{2}=\frac{k}{m}$, k, m — натуральные, $\frac{k}{m}$ — несократимая дробь, но $2=\frac{k^n}{m^n}$, $k^n=2m^n$ — четное, значит, $k^n=(2l)^n=2m^n$, $m^n=2^{n-1}l^n$, т.е. число m тоже четное, дробь $\frac{k}{m}$ можно сократить.

Задача 4. Найдите все возможные наборы из трех попарно различных целых чисел, обладающих следующим свойством: если выбрать одно из этих чисел и прибавить к нему

сумму кубов двух других, то получится одна и та же сумма, независимо от выбранного числа.

Решение. Числа a, b, c удовлетворяют условию $a + b^3 + c^3 = a^3 + b + c^3 = a^3 + b^3 + c$. Вычтя из всех частей равенства выражение $a^3 + b^3 + c^3$, получим $a - a^3 = b - b^3 = c - c^3$, т.е. a, b, c – это попарно различные решения уравнения $f(x) = y_0$, где $f(x) = x - x^3$. С помощью производной $f'(x) = 1 - 3x^2$ мы видим, что область определения функции разбивается точками экстремумов $\pm \frac{\sqrt{3}}{3}$ на три промежутка монотонности, каждому из которых принадлежит ровно один из трех различных корней уравнения $f(x) = y_0$. Значит, считая, что $a \in \left(-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3}\right)$, имеем $y_0 = f(a) \in \left(-\frac{2\sqrt{3}}{9}; \frac{2\sqrt{3}}{9}\right)$, а так как y_0 целое, то $y_0 = 0$. Из уравнения f(x) = 0 находим, что a = 0, b = -1, c = 1. Остальные решения являются перестановкой данного решения.

Можно решать задачу также и аналитически. Учитывая, что $a \neq b$, выразим из равенства $a-a^3=b-b^3$ одну переменную через другую: $a=\frac{-b\pm\sqrt{4-3b^2}}{2}$. Видно, что $0 \le 4 - 3b^2 \le 4$, а значит, так как a и b – целые, то $4 - 3b^2 = 1$ или $4 - 3b^2 = 4$. Отсюда $b = \pm 1$ или b = 0, что соответствует набору чисел 0; -1; 1.

Задача 5. Дана система из n линейных алгебраических уравнений с n неизвестными, все коэффициенты которой отличны от нуля. При решении этой системы по формулам Крамера $x_k = \frac{\Delta_k}{\Delta}$ оказалось, что как основной определитель Δ , так и все дополнительные определители $\Delta_1,\ \Delta_2,\ \dots,\ \Delta_n$ равны нулю. Для каждого натурального n, отличного от единицы, ответьте на вопрос: «Верно ли, что данная система уравнений обязательно имеет бесконечно много решений?».

Решение. Если $n \ge 3$, то ответ отрицательный. Действительно, система уравнений вида $\begin{cases} x_1 + x_2 + \ldots + x_n = 1, \\ x_1 + x_2 + \ldots + x_n = 2, \\ \ldots \end{cases}$ не имеет решений, так как первое и третье уравнения

несовместны, но, с другой стороны, первые две строки в любом из определителей Δ , Δ_1 , $\Delta_2, ..., \Delta_n$ одинаковы, а значит, эти определители равны нулю.

Если же n = 2, то ответ положителен, так как из равенства нулю определителей следует пропорциональность их строк, причем коэффициент пропорциональности для всех определителей один и тот же. Значит, уравнения линейно зависимы, и система имеет бесконечно много решений.

Задача 6. Решите уравнение $(5-x-x^2)^2+3(5-x-x^2)-5=x$. **Решение.** Обозначим $f(x)=x^2+3x-5$ и $g(x)=5-x-x^2$. Тогда $\begin{cases} f(y)=x, \\ g(x)=y, \end{cases}$ т.е.

 $\begin{cases} 5 - x - x^2 = y, \\ y^2 + 3y - 5 = x. \end{cases}$ Складывая эти уравнения почленно, получим $y^2 - x^2 + 3y - x = x + y,$

откуда следует (y-x)(y+x+2)=0. Если y=x, то $x^2+2x-5=0$ и $x_{1,2}=-1\pm\sqrt{6}$; если же y=-x-2, то $5-x-x^2=-x-2$, отсюда $x^2=7$ и $x_{3,4}=\pm\sqrt{7}$.

Решения.

Физические факультеты. Старшие курсы.

Задача 1. Найдите площадь области, ограниченной линией $(x-y)^2 + x^2 = 1$.

Решение. Сделаем замену $x = \rho \cos \varphi$, $y = \rho \cos \varphi + \rho \sin \varphi$, где $\rho \ge 0$ и $0 \le \varphi < 2\pi$. Уравнение границы $(x-y)^2 + x^2 = 1$ в новой системе координат имеет вид $\rho = 1$. Якобиан перехода равен $J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \cos \varphi + \sin \varphi & -\rho \sin \varphi + \rho \cos \varphi \end{vmatrix} = \rho$. Следовательно, площадь искомой области равна $S = \iint_{\Omega} dx dy = \int_{0}^{2\pi} d\varphi \int_{0}^{1} \rho \, d\rho = \pi$.

Ответ: π .

Задача 2. Исследуйте на сходимость числовой ряд $\sum_{n=1}^{+\infty} \frac{(2n)!!}{1!+2!+...+n!}$, где (2n)!!- это произведение всех четных натуральных чисел, не превосходящих (2n).

Решение. Так как $1!+2!+...+n! < n \cdot n!$, то $a_n = \frac{(2n)!!}{1!+2!+...+n!} > \frac{(2n)!!}{n \cdot n!} = b_n$. К ряду $\sum_{n=1}^{+\infty} b_n$ применим признак Даламбера: $\lim_{n \to +\infty} \frac{b_{n+1}}{b_n} = \lim_{n \to +\infty} \frac{(2n+2)n}{(n+1)^2} = 2$. Из расходимости ряда $\sum_{n=1}^{+\infty} b_n$ по признаку сравнения следует расходимость исходного ряда.

Задача 3. Докажите, что формула $\int \cos^a x \, dx = \frac{\sin x \cos^{a-1} x}{a} + \frac{a-1}{a} \int \cos^{a-2} x \, dx$ верна для любого $a \neq 0$. С помощью этой формулы вычислите интеграл $\int\limits_0^{\frac{\pi}{4}} \cos^8 x \, dx$.

Решение. Продифференцируем и затем преобразуем правую часть формулы: $\left(\frac{\sin x \cos^{a-1} x}{a} + \frac{a-1}{a} \int \cos^{a-2} x \, dx \right)' = \frac{\cos^a x - (a-1) \cos^{a-2} x \sin^2 x + (a-1) \cos^{a-2} x}{a} = \cos^a x \,, \ \text{что совпадает с производной от левой части.}$

Найдем интеграл $\int \cos^8 x \, dx = \frac{\sin x \cos^7 x}{8} + \frac{7}{8} \int \cos^6 x \, dx = \frac{\sin x \cos^7 x}{8} + \frac{7}{8} \cdot \frac{\sin x \cos^5 x}{6} + \frac{7}{8} \cdot \frac{5}{6} \int \cos^4 x \, dx = \frac{\sin x \cos^7 x}{8} + \frac{7 \sin x \cos^5 x}{48} + \frac{35}{48} \cdot \frac{\sin x \cos^3 x}{4} + \frac{35}{48} \cdot \frac{3}{4} \int \cos^2 x \, dx = \frac{\sin x \cos^7 x}{8} + \frac{7 \sin x \cos^7 x}{48} + \frac{7 \sin x \cos^5 x}{48} + \frac{35 \sin x \cos^3 x}{192} + \frac{35}{64} \cdot \frac{\sin x \cos x}{2} + \frac{35}{64} \cdot \frac{1}{2} \int dx = \frac{\sin x \cos^7 x}{8} + \frac{7 \sin x \cos^5 x}{48} + \frac{7 \sin x \cos^5 x}{$

$$+\frac{35\sin x\cos^3 x}{192}+\frac{35\sin x\cos x}{128}+\frac{35x}{128}+c\ .$$
 Следовательно,
$$\int_0^{\frac{\pi}{4}}\cos^8 x\,dx=\frac{1}{8\cdot 2^4}+\frac{7}{48\cdot 2^3}+\frac{35}{192\cdot 2^2}+\\ +\frac{35}{128\cdot 2}+\frac{35\pi}{128\cdot 2}+\frac{6+14+35+105}{3\cdot 2^8}+\frac{35\pi}{512}=\frac{5}{24}+\frac{35\pi}{512}\ .$$
 Ответ:
$$\frac{5}{24}+\frac{35\pi}{512}\ .$$

Задача 4. Решите задачу Коши: $3(x^2-1)y^2y'+xy^3=x^3+x^2-x-1,\ y\left(\frac{1}{2}\right)=0.$

Решение. Сначала запишем уравнение в виде $\left(y^3\right)' + \frac{x}{x^2-1}y^3 = x+1$. Выполнив замену $y^3 = z, z = z(x)$, получим уравнение $z' + \frac{x}{x^2-1}z = x+1$. Находим решение методом вариации постоянной: $z' + \frac{x}{x^2-1}z = 0$, $\int \frac{dz}{z} = -\int \frac{x}{x^2-1}dx$, $\ln|z| = -\frac{1}{2}\ln|x^2-1| + c$, $z = \frac{C}{\sqrt{|x^2-1|}}$. Учитывая, что в начальном условии $x_0 = \frac{1}{2}$, выбираем интервал |x| < 1, то есть $|x^2-1| = 1-x^2$. После вариации постоянной C = C(x) получаем: $\frac{C'(x)}{\sqrt{1-x^2}} = x+1$, откуда $C(x) = \int (x+1)\sqrt{1-x^2}dx = -\frac{1}{3}\sqrt{\left(1-x^2\right)^3} + \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\arcsin x + C$. Итак, общее решение имеет вид $y^3 = -\frac{1}{3}(1-x^2) + \frac{x}{2} + \frac{\arcsin x}{2\sqrt{1-x^2}} + \frac{C}{\sqrt{1-x^2}}$. Найдем константу C, учитывая начальное условие $y\left(\frac{1}{2}\right) = 0$: $C = -\frac{\pi}{12}$. Окончательно имеем $y^3 = -\frac{1}{3}(1-x^2) + \frac{x}{2} + \frac{\arcsin x}{2\sqrt{1-x^2}} - \frac{\pi}{12\sqrt{1-x^2}}$.

Задача 5. Докажите, что для любого натурального n, отличного от единицы, существует n иррациональных чисел, сумма и произведение которых являются целыми.

Решение. Числа $a_1=a_2=\ldots=a_{n-1}=\sqrt[n]{2}$, $a_n=(1-n)\sqrt[n]{2}$ удовлетворяют условию задачи. Число $\sqrt[n]{2}$ иррационально, т.к. иначе получаем: $\sqrt[n]{2}=\frac{k}{m}$, k, m — натуральные, $\frac{k}{m}$ — несократимая дробь, но $2=\frac{k^n}{m^n}$, $k^n=2m^n$ — четное, значит, $k^n=(2l)^n=2m^n$, $m^n=2^{n-1}l^n$, т.е. число m тоже четное, дробь $\frac{k}{m}$ можно сократить.

Задача 6. Вычислить $\oint_C \frac{XdY-YdX}{X^2+Y^2}$, где $X=a_1x+b_1y$, $Y=a_2x+b_2y$, $a_1b_2-a_2b_1\neq 0$, C- простой замкнутый контур, окружающий начало координат.

Решение. Обозначим через D область, ограниченную простым контуром C.

Зададим отображение $f(x,y) = (X,Y), \begin{cases} X = a_1 x + b_1 y, \\ Y = a_2 x + b_2 y. \end{cases}$ Отображение является

непрерывно дифференцируемым (как линейное) и биекцией. При этом область D переходит в некоторую область $\tilde{D}=f(D)$, а край области D переходит в край области \tilde{D} . Точка (0,0) переходит в себя. Так как точка (0,0) — внутренняя точка области \tilde{D} , то найдётся окружность $\tilde{\Gamma}$ радиуса R с центром в начале координат, целиком лежащая в области \tilde{D} .

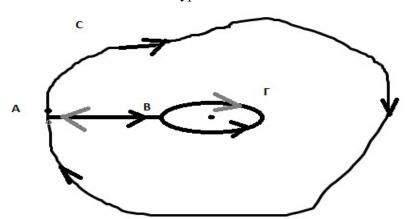
Зададим параметризацию окружности $\tilde{\Gamma}$: $\begin{cases} X = R\cos(t), \\ Y = R\sin(t), & \text{Так как } \Delta = a_1b_2 - a_2b_1 \neq 0 \text{ , to } \\ t \in [0, 2\pi]. \end{cases}$

переменные x,y однозначно выражаются через X,Y из системы $\begin{cases} X=a_1x+b_1y, \\ Y=a_2x+b_2y. \end{cases}$

Окружность $\tilde{\Gamma}$ при отображении f^{-1} перейдёт в эллипс Γ с параметризацией

Окружность 1 при отоораж
$$\begin{cases} x = \frac{R}{\Delta}(b_2 \cos(t) - b_1 \sin(t)), \\ y = \frac{R}{\Delta}(a_1 \sin(t) - a_2 \cos(t)), \\ t \in [0, 2\pi]. \end{cases}$$

Соединим внешний контур C с внутренним контуром Γ каким-нибудь отрезком AB; пусть точка A лежит на контуре C .



Тогда $\oint_C \frac{XdY-YdX}{X^2+Y^2} = \int_\Pi \frac{XdY-YdX}{X^2+Y^2} + \oint_{\Gamma^+} \frac{XdY-YdX}{X^2+Y^2}$, где $C = C^+ \cup AB^+ \cup \Gamma^- \cup \Gamma^+ \cup AB^-$,

 $\Pi = C^+ \cup AB^+ \cup \Gamma^- \cup AB^-.$

Интеграл $\int_{\Pi} \frac{XdY - YdX}{X^2 + Y^2}$ равен нулю по формуле Грина.

$$\oint_{\Gamma^+} \frac{XdY - YdX}{X^2 + Y^2} = \int_0^{2\pi} \frac{R^2(\cos(t)\cos(t) - \sin(t)(-\sin(t)))dt}{R^2(\cos^2(t) + \sin^2(t))} = \int_0^{2\pi} dt = 2\pi.$$

Otbet: 2π .

Решения.

Естественнонаучные факультеты.

Задача 1. Решите уравнение $x + y = x^2 - xy + y^2$ в натуральных числах.

Решение. Если x = y, то x = y = 2. Пусть теперь $x \neq y$. Заметим, что если (x; y) – решение уравнения, то (y; x) – тоже решение, поэтому достаточно найти решения, в которых y > x, т.е. y = x + k. Подставив в уравнение и преобразовав, мы получим $x^2 + (k-2)x + k^2 - k = 0$ – квадратное уравнение относительно переменной x. Потребуем, чтобы дискриминант этого уравнения был неотрицателен: $D = 4 - 3k^2 \ge 0$, отсюда k = 1. Следовательно, x = 1 и y = 2.

Ответ: (2; 2), (1; 2), (2; 1).

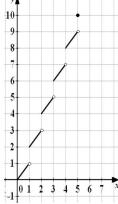
Задача 2. Рассмотрим отрезок AB. Последовательность точек $(M_n)_{n\in\mathbb{N}}$ строится следующим образом: $M_1=A$, $M_2=B$, M_{n+1} – середина отрезка, соединяющего точки M_{n-1} и M_n . К какой точке отрезка AB стремится последовательность $(M_n)_{n\in\mathbb{N}}$?

Решение. Индукцией по n проверяется, что точка M_n отстоит от точки A на $\frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^{n-1} \right)$ длины отрезка AB . Таким образом, $(M_n)_{n \in \mathbb{N}}$ стремится к точке C отрезка AB , отстоящей от A на $\frac{2}{3} \|AB\|$.

Задача 3. Постройте график функции y = x + [x] при $0 \le x \le 5$, где [x] — это целая часть числа x.

Решение.
$$y = x + [x] =$$

$$\begin{cases} x, & 0 \le x < 1, \\ x+1, & 1 \le x < 2, \\ x+2, & 2 \le x < 3, \\ x+3, & 3 \le x < 4, \\ x+4, & 4 \le x < 5, \\ 10, & x = 5. \end{cases}$$



Задача 4. Какой из двух следующих пределов существует, а какой нет: а) предел последовательности $\limsup \sin(\pi n)$; б) предел функции $\lim \sin(\pi x)$? Ответ обоснуйте.

Решение. Так как $\sin(\pi n) = 0$ при любом натуральном n, то $\limsup_{n \to \infty} \sin(\pi n) = 0$. Покажем теперь с помощью определения Гейне, что $\limsup_{x \to \infty} \sin(\pi x)$ не существует. Действительно, если рассмотреть две бесконечно большие последовательности $x_n = n$ и $y_n = 2n + \frac{1}{2}$, то $\limsup_{n \to \infty} (\pi x_n) = 0$, но $\limsup_{n \to \infty} (\pi y_n) = 1$.

Задача 5. Вычислите значение выражения $\frac{\partial \rho}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial \varphi}{\partial x} \frac{\partial x}{\partial \varphi}$, где $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $\rho > 0$, $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$.

Решение. Поскольку $x=\rho\cos\varphi,\ y=\rho\sin\varphi$, то $\rho=\sqrt{x^2+y^2},\ \varphi=\arctan\left(\frac{y}{x}\right)$. Найдем все частные производные, входящие в искомое выражение: $\frac{\partial\rho}{\partial x}=\frac{x}{\sqrt{x^2+y^2}}=\frac{x}{\rho}=\cos\varphi$, $\frac{\partial x}{\partial \rho}=\cos\varphi$, $\frac{\partial x}{\partial \varphi}=-\rho\sin\varphi$, $\frac{\partial\varphi}{\partial x}=-\frac{y}{x^2+y^2}=-\frac{\sin\varphi}{\rho}$. Подставив, получим $\frac{\partial\rho}{\partial x}\frac{\partial x}{\partial \rho}+\frac{\partial\varphi}{\partial x}\frac{\partial x}{\partial \varphi}=\cos^2\varphi+\sin^2\varphi=1$.

Ответ: 1

Задача 6. Существуют ли три различных иррациональных числа, сумма и произведение которых являются целыми?

Решение. Да. Числа $\sqrt[3]{2}$, $2\sqrt[3]{2}$ и $-3\sqrt[3]{2}$ удовлетворяют условию задачи.

Число $\sqrt[3]{2}$ иррационально, т.к. иначе получаем: $\sqrt[3]{2} = \frac{m}{n}$, m, n — натуральные, $\frac{m}{n}$ — несократимая дробь, но $2 = \frac{m^3}{n^3}$, $m^3 = 2n^3$ — четное, значит, $m^3 = (2k)^3 = 2n^3$, $n^3 = 4k^3$, т.е. число n тоже четное, дробь $\frac{m}{n}$ можно сократить.