

Город Снежинск Работа в РФЯЦ-ВНИИТФ

В РФЯЦ-ВНИИТФ были созданы рекордные по характеристикам Ядерные Заряды (ЯЗ) и Ядерные Боеприпасы (ЯБП)

- самый маленький ЯЗ для артиллерийского снаряда калибра 152 мм
 - самый лёгкий боевой блок для Стратегических ядерных сил
 - самый прочный и термостойкий ЯЗ, выдерживающий давление до 750 атм. и нагрев до 120°С, предназначенный для мирных целей
 - **самый чистый ЯЗ**, предназначенный для мирных применений, в котором 99,85% энергии получается за счёт синтеза ядер лёгких элементов
 - **самый ударостойкий ЯЗ**, выдерживающий перегрузки более 12 000 g

Задачи РФЯЦ-ВНИИТФ

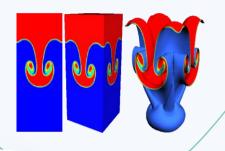
Решение научно-исследовательских проблем разработки и испытания **ядерных боеприпасов** стратегического и тактического назначения, мирного использования ядерной и термоядерной энергии. Разработка оборудования общепромышленного и медицинского назначения

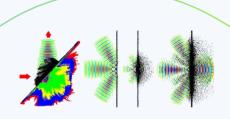
Проведение фундаментальных и прикладных исследований в области физики высоких плотностей энергии, актуальных вопросов взаимодействия излучения с веществом, механики сплошных сред (модели описания турбулентности и гидродинамических неустойчивостей), выполнение и сопровождение супервычислений

Ведется **разработка** физико-математических моделей, алгоритмов и компьютерных программ для **численного решения задач** основной тематики института

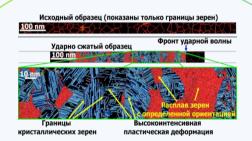
ЗАДАЧИ ОТДЕЛЕНИЯ

Основная деятельность


Сотрудники отделения занимаются фундаментальными исследованиями процессов, протекающих при ядерном взрыве, а также сопровождающими его различными явлениями, протекающими при высоких энергиях



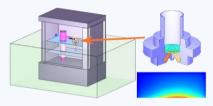
Математическое моделирование


Взаимодействие лазерного импульса с твердотельной мишенью

Создание вычислительных программ для расчётов сложных многомерных гидродинамических течений с учётом переноса нейтронов и излучения

Моделирование гидродинамических неустойчивостей и турбулентности Разработка широкодиапазонных уравнений состояния веществ при высоких давлениях и температурах

Исследование излучательных свойств плотной высокотемпературной плазмы



Моделирование ударно-волнового сжатия поликристаллического образца

Расчёт переноса частиц методом **Монте-Карло**, развитие методов неаналогового моделирования

Изучение **детонации** взрывчатых веществ

Расчёт радиационной безопасности для медицинской установки нейтронной терапии

Крупномасштабное молекулярнодинамическое (МД) моделирование
динамических процессов на микро- и мезоуровнях. МД моделирование термодинамических и механических свойств материалов

Создание моделей процессов с участием термоядерных реакций

Особенности проведения численного моделирования на современном уровне

Использование как традиционных моделей, методов, схем, так и разработка новых, обладающих улучшенными свойствами

Моделирование в 1D, 2D и 3D геометриях

Использование современных средств пре- и постпроцессинга

Повышение точности математического моделирования

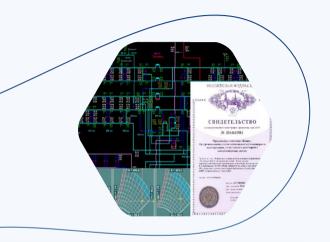
Возможность проведения больших серий численных экспериментов для определения необходимых параметров

Применение технологии массового распараллеливания для различных архитектур

Моделирование работы

специзделий

Моделирование распространения эпидемий


Радиационная

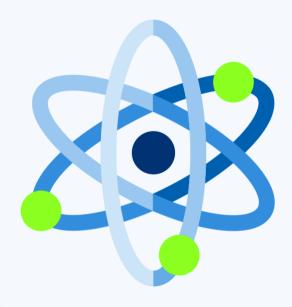
медицина

Конверсионная деятельность

Программно-вычислительный комплекс «Волна» нестационарного моделирования, оптимизации и мониторинга газотранспортных систем. Комплекс эксплуатируется в производственно-диспетчерских службах газотранспортных обществ ПАО «Газпром» в составе систем поддержки принятий решений по управлению технологическими процессами

Модель активной зоны реактора ВВЭР

Программный комплекс «ПРИЗМА». Статистическое моделирование переноса ионизирующего излучения: нейтроны, гамма-кванты, электроны, позитроны, ионы


РФЯЦ-ВНИИТФ РОСАТОМ

Обоснование ядерной и радиационной безопасности при обращении с ядерноопасными материалами

Расчётная оптимизация проектируемых приборов и установок, связанных с ионизирующим излучением

Воздействие излучения на радиоэлектронную аппаратуру

Радиационная медицина: нейтронная и протонная терапия

Кадровый состав подразделения

Общая численность ~ 260 человек

Среди них — **10 докторов** и **40 кандидатов наук**, 11 лауреатов Государственных премий и премий Правительства РФ, более 40 сотрудников награждены государственными наградами

Условия для молодых специалистов

Требования

- Магистратура или специалитет
- Средний бал по диплому не ниже 4,3
- Гражданство РФ
- Резюме в свободной форме:

ФИО, дата и место рождения,
ВУЗ, факультет, специальность,
год окончания, средний балл диплома,
темы курсовых и дипломных работ,
уровень владения компьютером и т.д

Варианты заданий на практике

- Решение системы уравнений газовой динамики.
- Решение задач по построению сеток в заданной области и поиска оптимального положения узлов сетки
- Решение уравнения переноса методом конечных разностей
- Решение задач магнитной газовой динамики
- Решение линейного уравнения переноса частиц методами Монте-Карло
- Решение уравнения теплопроводности
- Решение систем линейных уравнений

Каждая задача состоит из нескольких этапов: знакомство, исследование, программная реализация (в том числе с использованием инструментов MPI и OpenMP, проведение расчетов и т.д.)

Выбор задачи или конкретного этапа определяется **индивидуально** с учетом сроков прохождения практики

Контакты

Отдел кадров:

456770, Челябинская область, г. Снежинск, ул. Васильева, д.13, а/я 245, ФГУП «РФЯЦ-ВНИИТФ»

Телефон/факс: 8(351-46) 5-25-02

E-mail: oup@vniitf.ru

Сайт: www.vniitf.ru, www.snz.ru

Специалисты отделения

Ураков Максим Сергеевич Андреевич

Телефон: 8(351-46) 5-48-29 **E-mail:** m.s.urakov@vniitf.ru

Кошутин Дмитрий

Телефон: +7 922 706 9122 **E-mail:** koshutinda@vniitf.ru

ПРИГЛАШАЕМ НА РАБОТУ И ОЗНАКОМИТЕЛЬНУЮ ПРАКТИКУ

Спасибо за внимание